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The shape of a jet of Newtonian liquid issuing from a capillary needle into air 
is considered. The results of two theoretical approaches are presented. One 
approach is a perturbation analysis about the final state of the jet and the other 
is a boundary-layer analysis near the point of jet formation. Comparison of the 
predictions with experimental jet shapes shows them to be in semi-quantitative 
agreement. Especially interesting is the presence of a ‘discontinuity’ in the 
empirical exponential decay rate of the jet radius occurring at  a Reynolds 
number somewhere between 14 and 30 and the correspondence of this discon- 
tinuity with the peculiar behaviour in this range of the Reynolds number of the 
theoretical eigenvalue. 

1. Introduction 
The liquid in a laminar jet issuing from a long capillary needle into an im- 

miscible and inviscid medium (such as air) experiences a sudden elimination 
of the viscous shear stress at the newly formed jet surface. In  the absence of 
gravitational effects, the removal of this shear stress results in the relaxation 
of the velocity profile until plug flow is established at  some distance sufficiently 
far from the needle exit. Accompanying the velocity rearrangement is a change 
in jet diameter. Neglecting viscous forces, Harmon (1955) made mass and momen- 
tum balances for the jet between the exit, where the velocity profile is taken to 
be parabolic, and a point far downstream where the velocity profile has become 
flat. This straightforward calculation leads to the result that the average velocity 
increases to $ times the initial average velocity, Go, and the jet diameter therefore 
decreases to 2/(3)/2 ( = 0.866) times the initial jet diameter, 2a,. If viscous forces 
are present in the jet, and indeed they must be to effect the profile rearrangement, 
then the final velocity will be less than $ E, because some of the kinetic energy 
of the jet will be dissipated into heat. Consequently the final jet radius will not 
be decreased as greatly as suggested by Harmon. In  fact, under certain conditions 
the viscous dissipation is so great that the jet actually slows down and its dia- 
meter increases. This problem has been discussed by Middleman & Gavis 
(1961) and Gavis (1964). They present a correlation for the ratio, x, of the 
final jet diameter to the initial jet diameter as a function of the Reynolds number, 
2a,,%,/v, based on the initial jet diameter and the initial average velocity. For 
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the Reynolds numbers less than about 16 the jets expand; for the Reynolds 
numbers greater than 16 they contract. As the Reynolds number becomes 
large, x seems to approach the value predicted by Harmon. In a later paper 
Middleman (1964) used a von Khrmhn-type integral approach in an attempt to 
calculate the velocity profile and jet diameter as functions of the distance from 
the needle exit. His calculation is limited to the high Reynolds numbers since x 
was taken to be ,/(3)/2. Furthermore, as Middleman points out, the results are 
dependent upon his choice of a matching condition which essentially fixes 
the location of the theoretical curve in his figure 2. 

There are two papers dealing with an almost identical problem, namely, finding 
the length required to attain plug flow in a jet issuing from an orifice where the 
initial velocity profile is flat except for a very thin peripheral layer through which 
the velocity drops to zero. Bohr (1909), in seeking an order-of-magnitude esti- 
mate for this length, made certain approximations in the equations of motion 
and sought solutions decaying exponentially in axial distance. It turns out that 
Bohr’s theory is applicable to the present problem a t  ‘large’ distances from the 
needle exit but, because of the approximations he made, its validity is limited to 
the large Reynolds numbers (greater than about 40). For the same problem 
(but with the added complication of gravitational acceleration in a vertically- 
oriented jet) Scriven & Pigford (1959) used the boundary-layer theory previously 
developed by Goldstein (1930) for an analogous problem to predict the surface 
velocity as a function of the distance from the exit. They found that the surface 
velocity initially increases as the cube root of the axial distance. 

In  this paper we shall discuss the results of two theoretical approaches which 
enable us to predict certain characteristics of the jet shape. One approach, 
valid for large axial distances, is a perturbation analysis about the final state 
of the jet. It leads to an interesting eigenvalue problem, which for the large 
Reynolds numbers reduces to the problem already investigated by Bohr. For the 
low Reynolds number ( < 16) the eigenvalues show an unexpectedly peculiar 
behaviour which is somewhat reproduced in the experimental data. The second 
approach is a boundary-layer treatment valid for short axial distances and the 
large Reynolds numbers which predicts that the surface velocity and change in 
jet radius both increase as the cube root of the axial distance. In  the treatment 
it is necessary to take into account explicitly the (spatially) changing surface 
in order that the coefficients of the cube root may be calculated. 

a jet radius; 
g 
p pressure; 
r radial co-ordinate; 
Re = 2aw/v, the Reynolds number; 
S = pcra/,u2, surface-tension parameter; 
u radial velocity; 
w axial velocity; 
y distance from free surface; 
z axial co-ordinate; 

The following notation is used: 

velocity function for boundary-layer analysis; 
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a constant; 
eigenvalue ; 
= (a, - a) ,  deviation of jet surface from r = a,; 
= (4E0 y3/3a, vz)), similarity variable; 

viscosity; 
kinematic viscosity; 
density ; 
surface tension; 

stream function; 
subscript denoting value at  needle exit; 
subscript denoting value at  final jet state; 
superscript denoting perturbation from value at  final jet state; 
superscript denoting average across jet cross-section. 

= a,/a,, ratio of final jet diameter to initial jet diameter; 
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2. Theory 
We shall consider the jet to be composed of a Newtonian liquid of constant 

physical properties. The only surface property of importance is the surface 
tension. It is assumed that the jets are formed and remain axially symmetric, 
and are not affected by gravity or the surrounding medium. (This actually 
restricts the velocity to a range, low enough that air friction is unimportant 
and yet high enough that the profile relaxation is complete before the jet has been 
accelerated by gravity.) Infinitely far from the needle exit the jet will approach 
its final state of radius a,, axial velocity w,, pressure p ,  = cr/a, and zero radial 
velocity. Very far from the needle exit, the velocity, jet radius and pressure 
will be slightly different from these final values. Thus we put 

r ar ’ w = w,+w = w,--- h 

p =pa+-@, a = a,+&, I 
where the perturbations (represented by ) are considered to be so small that 
second-order terms in them may be neglected in the ensuing theory. In the 
above we also introduce the perturbation stream function which identically 
satisfies the continuity equation because of the axial symmetry. When these 
expressions are substituted into the Navier-Stokes equations and only the linear 
terms are retained and when the pressure is eliminated between the two equations 
the following equation for the disturbance stream function is obtained: 

where 
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The solution to this differential can be expressed in the form 
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I + c Jl(y*r/uw) + D Y*r -q(y*Y/a,) e-yzlam , (3) 
a, a m  

where 

and Re, = 2a,w,/v. 

The final Reynolds number, Re,, is related to the Reynolds number based on the 
initial jet diameter and the initial average velocity by Re, = Re/x and since x 
changes by about 15% at most, the two Reynolds numbers have roughly 
equivalent numerical values. J,(s) and Y,(z) are Bessel functions of order n, 
and A ,  B, C, D ,  are constants to be determined by the boundary conditions. 

The conditions that the radial velocity vanishes and the axial velocity remains 
finite at  the jet centre require that the constants B and D be zero, At the free 
surface the tangential shear stress is zero and the change in normal stress across 
the free surface is due to the latter's curvature and the interfacial surface tension. 
In  addition, the location of the free surface is given by the kinematic condition 

= Du/Dt (or alternately by the condition of constant volumetric flow- 
rate). To the order of approximation considered here, these conditions may be 
written in terms of the disturbance stream function as 

y*2 = y2 + $7 Re,, 

and ( 5 )  

at r = a,. When the stream function given by (3) is substituted into (5) and (6) 
two linear, homogeneous equations for the constants A and B are obtained. 
A non-trivial solution exists only if the determinant of the coefficients vanishes. 
This leads to the following eigenvalue equation for determining the damping 
factor, y :  

4y4 b * J o ( ~ * ) l J l ( ~ * ) )  + ( Y * ~  -r2) 2y2 - ( Y * ~  +PI2 { Y J ~ ( Y ) / J ~ ( Y ) )  = S(1 + y 2 )  y2, ( 7 )  

in which the group S = pva,/,u2 has been chosen to characterize the role of the 
surface tension instead of the Weber number because this group is independent 
of the jet velocity. Thus y can be determined as a function of Re, and S. Actually, 
( 7 )  permits an infinite number of solutions, so that the perturbations would be 
expressed as infinite series, the coefficients inthese series to be found by an appro- 
priate weighting technique. If one gets sufficiently far from the needle exit, 
only the term with the lowest eigenvalue should be important since its decay 
rate is the slowest. 
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We have calculated the lowest eigenvalue. The determination of the eigen- 
values from (7)  by trial and error is an easy calculation for the large final Reynolds 
numbers. The values obtained are independent of the surface-tension parameter 
S. As the final Reynolds number tends towards infinity the eigenvalue is given 
by the relation y = 29*36/Re,, which is the result obtained by Bohr by neglect- 
ing the second derivative with respect to axial distance in the Laplacian operator. 
Below a final Reynolds number of about 40 the eigenvalues deviate from Bohr's 
values and the surface-tension group becomes an important parameter. For the 

0 ~ ' ~ ' ~ t ~ " t ~ ' ~ ~ ' t ' t ~ ' '  
0 10 20 30 40 50 60 

Reynolds number Za, w,/v 

FIGURE 1. The lowest eigenvalue as s function of the final Reynolds number, 2a, u*,/v, and 
the surface tension parameter, puo,/p2. Note : where the eigenvalue is complex only the 
real part is shown. 

typical case S = 0, as the Reynolds number is decreased below 40 the y us. 
Re, curve becomes steeper and steeper until it obtains an infinite slope at 
Re, = 16.8, y = 1-86. The curve then smoothly doubles back on itself, i.e. 
y increasing with Re, increasing, until a second point of infinite slope is reached 
at Re, = 26.6, y = 2.65 (see figure 1). The curve then doubles back on itself a 
second time, with y now increasing as Re, decreases. This reversal is repeated 
over and over again until the curve becomes asymptotic to the line Re, = 47r. 
For certain values of the final Reynolds number, (7 )  permits complex eigenvalues. 
In  fact each point of infinite slope of the y us. Re, curve is a bifurcation point 
from which two complex (conjugate) solutions spring. These complex eigenvalues 
were determined by a trial and error procedure using a digital computer. The 
results of the calculations are shown in figure 1 ; in regions where the eigenvalue 
is complex only the real part is shown. Analogous curves exist for other values 
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of the surface-tension group except that when S = 00 the eigenvalue is a real, 
single-valued function of the Reynolds number over the entire Reynolds- 
number range. 

Thus, this approach predicts that sufficiently far from the needle exit the 
jet radius and velocities decay exponentially to their final values. The eigen- 
value problem gives the rate of decay as a function of the final Reynolds number 
and the surface-tension group. (In regions were the eigenvalue is multi-valued 
some difficulty in choice arises.) However, the magnitude of the deviation from 
the final state cannot be calculated until the initial conditions at  the needle exit 
are imposed. This is complicated by the fact that the equation for the stream 
function is a fourth-order equation rather than belonging to the well-investigated 
second-order Sturm-Liouville system. Even so, the assumption that the flow is 
only slightly perturbed from the final state is not valid near the needle exit. 
One is therefore forced to seek a solution which is valid near the needle exit and 
to try to match this with the above perturbation solution. As a first approxima- 
tion to a solution which is valid near the needle exit, we have examined the 
boundary-layer problem sketched below. The details of this analysis will be 
presented elsewhere. 

The defining property of this flow is the instantaneous removal of the wall 
shear stress at  the needle exit. At the high Reynolds numbers, at  least, the shear 
stress in the fluid must therefore fall from some finite value at  a point slightly 
within the jet to zero at the jet surface; i.e. there is a peripheral boundary layer 
in which the removal of the large wall shear stress is felt. It is plausible that 
near the needle exit the interaction of the peripheral region of the jet with the 
faster moving core is negligible. (An attempt to take this interaction into 
account was made, but the calculation then becomes immensely more compli- 
cated.) Near the jet surface the Poiseuille parabolic velocity profile can be 
approximated as w = (42u,/ao) (<+ y ) ,  where y is the distance into the liquid 
from the free surface and < is the deviation of the jet surface from r = a,. As- 
suming a flow which deviates from the above only near y = 0 one may apply the 
standard (two-dimensional) boundary-layer equations to calculate the velocity 
profile and change in jet radius. Fortunately, the problem admits a similarity 
solution. With the velocity given as 

W = (4Go/ao) {<(z) Y (3vzao/4~0)*!7(7)}, (8) 

where 7 = (42u,y3/3a,vz)), 

the following ordinary equation for g(7) is obtained: 

The boundary conditions for zero shear stress a t  the free surface and for the 
vanishing of the modification of the velocity far from the free surface are 

and 

at 7 = 0 ,  g ’ = - 1  

at 7=00, g =  0. 
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In addition, the constraint of constant volumetric flow rate must be satisfied 
and this imposes the following condition which determines the constant p: 

Prn 

The problem was solved by the method of Meksyn (1961), namely by seeking 
a power-series solution for small 7, and then applying the boundary condition 
a t  infinity in terms of an integral which is evaluated by the method of steepest 
descents. The result is similar to that of Scriven & Pigford in that both the surface 
velocity and the change in jet radius increase as the cube root of the axial dis- 
stance. They are given by the following formulae: 

</uo = (ao- a)/ao = 0.703 {(z/ao)/(2ao;iijo/v))5, 
(12) 

It is interesting to note that, for the large Reynolds numbers, both approaches 
give the jet shape as a function of the group z/aRe. 

I W*urr/Go = 5.07 ~ ( ~ / ~ 0 ) / ( 2 ~ 0 ~ 0 / ~ ) ~ ~ ~  

3. Experiment 
The jets were produced by forcing liquid from a reservoir through capillary 

nozzles. Three liquids: white oil, a glycerol-water mixture, and castor oil were 
used. Capillaries of inside diameter 0.085 -0.27 cm fabricated from stainless 
steel hypodermic tubing were used. In table 1 are listed the physical properties 
of the liquids, which varied slightly from experiment to experiment because of 
changes in room temperature and the conditions, needle diameter and average 
ejection velocity, for which data were taken. The physical properties were 
measured by standard means and found to be in agreement with literature or 
catalogue values. The table also lists the symbols used in the accompanying 
figures. 

For a given liquid and capillary there was a lower limit on the velocity for 
which good data could be obtained There were two reasons for this. In  some 
cases the jet was affected by gravity before rearrangement was complete, and in 
other cases the liquid wetted the edge of the needle giving an initial diameter 
larger than the inside diameter of the capillary. Runs where either of these two 
effects occurred were rejected. On the other hand, at sufficiently high ejection 
velocit,ies a third limitation on the data was encountered: the viscous dissipation 
in the needle was so large that the viscosity was non-uniform and the velocity 
profile was significantly altered from the parabolic. Since this effect is accom- 
panied by a flatter initial velocity profile, it was made manifest by x being closer 
to unity than one would have expected. We have restricted our data to runs for 
which the maximum point temperature rise was less than 5 "C as calculated 
from the theory of Brinkman (1951) €or the viscous heating of a fluid (of constant 
viscosity) flowing in a tube of constant wall temperature. Thus, for castor 
oil flowing in a tube of diameter 0-22 cm we are limited by viscous heating to the 
Reynolds numbers less than 24, and by gravitational acceleration to the Reynolds 
numbers greater than 4. 
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Jet  shapes were measured from flash photographs taken with a 5 x 7in. 
camera using a 35mm lens. The light from a microflash unit of 0.5psec duration 
was directed onto a ground-glass plate behind the jet so that a shadow photograph 
was obtained. In each photograph, along with the jet, there appeared a wire 
of known diameter, so that absolute lengths could be computed (although only 
ratios were required). The photographs were taken at  a magnification of about 
10:1 and were read on a travelling microscope. The measured jet diameters 
are probably accurate to more than three significant figures. 

Liquid 

White oil 
p = 0.64 to  0.69 poise 
p = 0.88 g/cm3 
IS = 30dyne/cm 

Glycerol-water mixture 
p = 4-6 to  5.2 poise 
p = 1.25 g/cm3 
u = 63 dyne/cm 

Castor oil 
p = 8.4 to 9.0 poise 
p = 0.96 g/cm3 
IS = 34dyne/cm 

Capillary 
diameter 

(cm) 

0.084 
0.181 
0.240 
0.269 

0.120 
0.181 
0.269 
- 

0.216 
- 

- 

Average value 
Range of of the  Correspond- 
the initial surface-tension ing symbol 

2a,?i~,/v pISarnliU2 figures 

30-102 2.9 0 
22-195 6.3 
46-124 8.3 8 

3-26 0.20 0 
&62 0.30 0 
4-37 0.45 5 

Reynolds number parameter used on 

49-200 9.4 4l 

- - 

4-24 0.054 A 
- - 
- - 

Table 1. Experimental conditions 

4. Experimental results 
In figure 2 is shown a series of jet shapes for the flow of the glycerol-water 

mixture at  the different Reynolds numbers leaving the 0.181 cm diameter needle. 
These runs all have a constant value of about 0.3 for the surface-tension group. 
For the Reynolds numbers below about 12 the jet diameter increases monotonic- 
ally with axial distance, but the magnitude of the increase diminishes as the 
Reynolds number is raised. Above a Reynolds number of approximately 17  the 
jet diameter monotonically decreases with axial distance and the magnitude 
of the change increases as the Reynolds number increases. Between the Reynolds 
numbers 12 and 17 the jet diameter first decreases and then increases as the axial 
distance is increased. Because of their close correspondence, it is tempting to 
associate the Reynolds number for which the minimum of the jet shape first 
sets in with the Reynolds of the asymptotic line Re = 477, and the Reynolds 
number where the minimum disappears with the bifurcation point a t  Re, = 16.8. 
The Reynolds number for which the final diameter is the same as the initial jet 
diameter is approximately 14.4. 

Figure 3 is a plot of the ratio of the final diameter to  the initial diameter as a 
function of the Reynolds number. Although the value of the surface-tension 
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group S varied from 0.054 to 9-4, the data were all represented by a single curve 
(once the runs where there was significant heating were eliminated). Middleman 
& Gavis inferred from their data that, as the Reynolds number approached zero, 
x approached a constant value and as Re tended towards infinity it approached 

FIGURE 2. Jet shapes for a series of the Reynolds numbers. The surface tension 
parameter is roughly constant at 0.3. 

a second value, namely Harmon's result, ,y = $43 .  At our highest Reynolds 
numbers, between 100 to 200, the value of x was roughly constant at 0.8S5. 
This value is significantly larger than Harmon's expectation. The difference 
can most likely be attributed to a combination of viscous heating in the needle 
and air friction on the jet, both of which would tend to increase x for contracting 
jets. At  the other extreme, our data for the Reynolds number as low as 4 (where 
x = 1.10) show no sign of approaching a constant expansion (at least when 
presented on a linear plot as in figure 3). 

In order to test the perturbation theory, the data from each run were plotted 
in the form log la-ua,l/a, 'us. z/am. Except for the points for axial distances 
less than one-half radius and the points for large axial distances (after about two 
to three radii), where there was large experimental error in determining the 
difference (a  - am), the data gave straight lines indicating exponential decay. 
A few typical plots are shown in figure 4. The curves shown are for the glycerol- 
water mixture issuing from the 0.120 cm diameter capillary. From the slope of 
such plots the damping coefficient was determined. The damping coefficient is 

13 Fluid Mech. 25 
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The Reynolds number, ZaoW0/v 

FIGURE 3. Ratio of the h a 1  jet diameter to the initial jet diameter as a function of 
the Reynolds number. For the meaning of the symbols see table 1. 

I I I I I I I I  I I I I I  
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4% 
FIGURE 4. Typical plots of I a - a, I/a, vs. z/a,  showing exponential decay. 
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presented as a function of the final Reynolds number in figure 5. The most 
striking feature of the correlation is the apparent discontinuity in y a t  a final 
Reynolds number somewhere between 16 and 20. Because of the very slight 
changes in jet radius in this region it is difficult to identify the exact point of 
discontinuity, but it is interesting to note that it does occur within the Reynolds 
number range where the theoretical eigenvalue exhibits its peculiar behaviour, 

0 10 20 30 40 50 60 70 80 90 

The Reynolds number, 2a, w,/v 

FIGURE 5 .  Damping coefficient as a function of the final Reynolds number. For the 
meaning of the symbols see table 1. - , Perturbation theory for S = 0; - - - - , Bohr’s 
theory. 

when the surface-tension parameter is between 0 and 10. Again, there seems to 
be no significant variation of the damping coefficient with the surface-tension 
parameter for the range of variables studied here. Also shown in the drawing are 
the predictions of the perturbation theory presented above for S = 0,  and Bohr’s 
prediction. 

The data are in qualitative agreement with the theory advanced here. For 
example, in the final Reynolds-number range, where the theoretical eigenvalue 
is multi-valued, the experimental damping coefficient shows a discontinuity. 
For the final Reynolds numbers less than about 14, where the eigenvalue is 
complex, the experimental value is in order-of-magnitude agreement with the 
real part of the calculated eigenvalue. Incidentally, when the eigenvalue is 
complex one would expect that the jet surface as a function of axial distance 
would exhibit a damped oscillation. Although the existence of a minimum jet 
diameter might be taken as some evidence of this, it  should be pointed out that 
the calculation showed that the real part of the complex eigenvalue was always 
sufficiently larger than the complex part for the jet to decay to its (experi- 

13-2 
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mentally) final diameter well within the distance of one wavelength. For the 
final Reynolds numbers above 20, the damping coefficient is a monotonic 
decreasing function of the Reynolds number, and for the final Reynolds numbers 
above 40, the shape of the curve is in agreement with the predicted shape. 

010 I I I 1 I I 

d 005 
u 

0 
0 01 0-2 0.3 

@/ao Re)+ 

the boundary-layer analysis. 
FIGURE 6. Typical plots of (a, - a)/a ws. (z/a&e$ to test 

The experimental values are, however, larger by about a factor of 2. In  view of 
the fairly rapid decay of the jet shape-the change is complete in one to two jet 
diameters-it is possible that using only the term involving the lowest eigen- 
value is not sufficient to represent this region of rapid decay in which the data 
were taken. If higher eigenvalues are important, then the experimental damping 
coefficient would lie above the predicted values for the lowest eigenvalue. To 
take into account higher terms would require evaluation of the constants, A,, 
in the series expression a = a, + ; T ; A , e - ~ ~ * ' a m .  These cannot be evaluated without 
first establishing the orthogonality of the stream functions and determining the 
weighting functions. Even so, because of the approximations made, one should 
not expect the predictions to hold near the needle exit. 

Another way of displaying the apparent discontinuity in the experimental 
data is to plot, as suggested by Middleman (1964), the number of diameters down- 
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stream required to bring the jet to within 1 yo of its final diameter. Middleman 
presented data for the Reynolds numbers below 10 and above 100 and drew 
a straight line through the points on a log-log plot. Our data, however, show a 
very marked decrease in this required length for the Reynolds numbers between 
17 and 40. There appear to be two separate curves which lie on either side of 
Bohr’s line as shown in Middleman’s figure 2, our data falling on one curve for the 
Reynolds numbers less than 14 and on the other for the Reynolds numbers 
greater than 17. The Reynolds number for which this abrupt change in required 
length occurs is thus seen to be roughly the same as that for the abrupt 
change in damping coefficient. 

The boundary-layer approach near the needle exit predicts that the decrease 
in jet radius should vary as the cube root of the axial distance downstream. In  
figure 6 we plot (ao - .)/ao vs. (z/a,Re)* for several of the runs having the largest 
Reynolds number. For (x/aoRe)* less than about 0.25 the plots are straight lines 
through the origin, but as the axial distance increases above this value the plots 
level off, indicating the finite total change in jet diameter (x M &,/3). The slope 
of the linear portion increases slightly as the Reynolds number increases, but 
is always significantly less than the predicted slope of 0.703. The runs shown are 
for white oil issuing from a 0.181 em diameter capillary. For 2@,,a/v = 86, 122, 
and 195, the values of the slope were 0.30, 0-32, and 0.37, respectively. The dis- 
crepancy between these and the predicted slope of 0.703 may be due to the small- 
ness of the Reynolds number, but more likely it is due to the interaction of the 
peripheral boundary layer with the core fluid. 

5. Summary 
The shape of a jet of Newtonian liquid issuing from a capillary needle into air 

has. been studied theoretically and experimentally. One theoretical approach, 
a perturbation analysis about the final state of the jet, predicts that the jet radius 
will decay exponentially to its final value and gives the damping coefficient 
(i.e. the lowest eigenvalue) as a function of the final Reynolds number, 2amwm/i~, 
and a surface tension parameter, S = pcram/p2. For non-infinite values of the 
surface-tension parameter the theoretical damping coefficient exhibits peculiar 
behaviour when the final Reynolds number is less than about 27, becoming multi- 
valued or complex. This peculiarity is reflected in the experimental damping 
coefficient by the occurrence of a discontinuity in the same Reynolds’-number 
range. Otherwise the experimental and theoretical damping coefficients are in 
agreement as to dependence on the Reynolds number, but the experimental 
values are larger by a factor of 2. A boundary-layer approach was developed 
which predicts that for short axial distances and the large Reynolds numbers 
the change in jet radius varies as the cube root of the axial distance. This cube- 
root dependence is confirmed, but the observed coeficient is less by a factor of 2 
than the predicted one. 

The most likely reason for the discrepancy between the perturbation analysis 
and the measurements is that the decay is so rapid that more than just the lowest 
eigenvalue term is required to represent the data. The discrepancy between the 
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boundary-layer analysis and the measurements may be due to the interaction 
of the peripheral boundary layer with the core of the jet, which interaction was 
neglected in the theory, or to the smallness of the Reynolds numbers. Once 
reliable estimates of the jet shapes for large and small axial distances are a t  
hand, a matching procedure might be developed to predict the entire jet shape. 

The present work suggests several experiments which would be of value. 
To test the boundary-layer analysis it would be of interest to measure the shapes 
of jets with the much higher Reynolds numbers (on the order of 1000 to 2000). 
Data for jets with large values of the surface-tension parameter (X > 100) 
would be of interest in view of the large difference in the theoretical curves for 
large and small values of S a t  the low Reynolds numbers. Also, the complication 
introduced by viscous heating within the needle deserves investigation because 
of the use of capillary jets to obtain rheological data for very viscous non- 
Newtonian liquids. 
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